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1. INTRODUCTION

Surface waves play an important role in the study of earth quakes, seismology and geophysics.
The propagation of surface elastic waves along with other geophysical and geothermal data
carry information about the structure and distribution of underground magnum. The surface
wave propagation as part of exploration seismology helps in various economic activities like
tracing of hydrocarbons and other mineral ores which are essential for various developmental
activities like construction of dams, huge buildings, roads and bridges, etc.
Thermoelasticity theories which admit a "nite speed for thermal signals (second sound)

have aroused much interest in the last three decades. Recently, relevant theoretical
developments in the theory of thermoelasticity on the subject of "nite velocity of heat
propagation are due to Green and Naghdi [1}3], which provide basic modi"cations in the
constitutive equations that permit treatment of a much wider class of heat #ow problems.
An important feature of this theory which is not present in other thermoelasticity theories is
that, this theory does not accomodate dissipation of thermal energy and is also known as
generalized theory of thermoelasticity.
&&Micropolar elasticity'' termed by Eringen [4] is used to describe deformation of elastic

media with oriented particles. A micropolar continuum is a collection of interconnected
particles in the form of small rigid bodies undergoing both translational and rotational
motions. Typical examples of such materials are granular media and multimolecular bodies,
whose microstructures act as an evident part in their macroscopic responses. The physical
nature of these materials needs on asymmetric description of deformation, while theories for
classical continua fail to accurately predict their physical and mechanical behaviour. For
this reason, micropolar theories were developed by Eringen [4, 5] for elastic solids and
#uids and are now universally accepted.
The theory of micropolar thermoelasticity has been a subject of intensive study and was

developed by extending the theory of micropolar continua to include thermal e!ects by
Eringen [6] and Nowacki [7]. Di!erent authors [8}15] discussed di!erent type of problems
in generalized thermoelasticity/micropolar elasticity/micropolar generalized thermoelasticity.
The present study is concerned with the problem of surface wave propagation in a micropolar
generalized thermoelastic half-space without energy dissipation. As such the practical
relevance of our problem in the Earth, planetary and engineering sciences is self-evident.

2. PROBLEM FORMULATION AND SOLUTION

A homogeneous, isotropic, micropolar generalized thermoelastic solid occupying the
half-space is considered in an undisturbed state and initially at uniform temperature ¹

�
.
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The rectangular Cartesian co-ordinates are introduced having origin on the surface z"0
and z-axis is chosen in the direction of increasing depth. We are discussing
a two-dimensional problem (xz-plane) with wave front parallel to the y-axis. We consider
the possibility of a type of wave travelling in the direction Ox, so that the disturbance is
largely con"ned to the neighbourhood of the boundary and at any instant all particles in
any line parallel to Oy have equal displacements.
Following Eringen [4] and Green and Naghdi [3] the "eld equations and constitutive

relations for a micropolar generalized thermoelastic solid without body forces, body
couples and heat sources can be written as
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where �, �, K, �, � 	 are material constants, � is the density, j is the microinertia,
�"(3�#2�#K)�

�
, �

�
is the coe$cient of linear thermal expansion, C* is the speci"c heat

at constant strain and K* ("C*(�#2�)/4) is a material constant characteristic of the
theory. ¹ (x, z, t) is the temperature change above the uniform reference temperature ¹

�
,

u is the displacement vector, � is the microrotation vector, t
��
are the components of force

stress and m
��
are the components of couple stress.

For the two-dimensional problem, we have
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and we assume time harmonic variations for the wave propagating in the positive direction
of x-axis as
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where, ("kc) is the frequency of the wave, k is the wave number and c is the phase
velocity. Substitution of equations (6)}(8) in equations (1)}(3) and then elimination of�

�
and

¹ from the resulting equations would give us two di!erential equations, solution of which,
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satisfying the radiation conditions can be written as
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A
�
(i"1,2,4) are constants and Re(�

�
)*0, (i"1,2,4).

3. BOUNDARY CONDITIONS

We assume the plane boundary to be isothermal and the boundary conditions are the
vanishing of stresses and temperature on the free surface, i.e.,

t
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"¹"0 at z"0. (14)

Making use of equations (4)}(8) and (9)}(12) in the above boundary conditions, we obtain
four homogeneous equations in four unknowns namely A

�
, A

�
, A

�
and A

�
. Elimination of

these four unknowns gives the wave velocity equation for the Rayleigh waves in
a micropolar generalized thermoelastic medium as
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Equation (15) represents the Rayleigh-wave velocity equation relating the phase velocity
c to the wave length 2�/k. The wavelength is a multivalued function of phase velocity (each
value corresponding to the di!erent mode of propagation) and hence indicates the
dispersive nature of the wave.
Particular cases: (i) In the absence of micropolar e!ect (i.e., whenK"�"�"	"0), the

frequency equation (15) will reduce to
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are same as de"ned by equation (13), with K"0.
(ii) Neglecting the thermal e!ect, the frequency equation (15) reduces to
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Equation (19) is the Rayleigh-wave velocity equation in a micropolar elastic half-space. The
frequency equation (19) is same as obtained by De Nath and Sengupta [11].

4. NUMERICAL RESULTS AND DISCUSSION

Equation (15) determines the velocity of Rayleigh waves in a micropolar generalized
thermoelastic medium. In order to study the problem numerically, frequency equation (15)
is solved by calculating the velocity ratio c/c

�
(c�

�
"1/a

�
) for given values of the

dimensionless wave number kH, where H is a parameter of dimension length. We take the
case of magnesium crystal [16, 17] like material for numerical calculations. The physical
constants used are

�"9)4�10��dyn/cm�, �"4)0�10��dyn/cm�,

K"1)0�10��dyn/cm�, 	"0)779�10	�dyn,

j"0)2�10	�� cm�, �"1)74 gm/cm�,

C*"0)104�10
 cal/g3C, �"0)0268�10�dyn/cm� 3C,

¹
�
"233C.

Using the above values of parameters, the dispersion curves showing the variation of
velocity ratio with non-dimensional wave number are shown in Figure 1. The variations of



Figure 1. Variation of phase velocity with wave number. **MGT; } } } } ME.

LETTERS TO THE EDITOR 177
velocity ratio for micropolar generalized thermoelastic (MGT) medium and micropolar
elastic (ME) medium are shown by solid line (**) and dashed line (- - -) respectively. It is
found that a number of modes of propagation exist. Only the variations of fundamental
modes of propagation for both the cases are presented graphically. From 1, it is evident that
due to thermal e!ect the values of velocity ratio for MGT medium are large in comparison
to ME medium. It is seen that the velocity of propagation decreases gradually as the wave
number increases for some initial value of kH and then becomes almost constant after
a certain range for both the media (MGT and ME). Thus it is observed that the wave
velocity equations (15) and (19) for MGT and ME media, respectively, are dispersive,
whereas for generalized thermoelastic medium, we obtain the Rayleigh root (0)290025) for
the frequency equation (17) and for an elastic medium the Rayleigh root is 0)526022.
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